International Forum of Mathematical Education Promotion
The Forum is conducted under the auspices
of French-Russian Forum “The Trianon dialogue”.
October, 6th
15:00 ‒ 19:00 CET
October, 8th*
13:30 ‒ 18:30 CET
October, 13th*
13:30 ‒ 18:30 CET
Participation forms
in-person participation (attendance at one of the Forum sites)
(October, 6th)
Adresses
France:
Institut de mathématiques de Jussieu, Sorbonne université, 2 place Jussieu, 75005
Russia: HSE University
11, Myasnitskaya ul., classroom
518, Moscow, Russia

online participation (taking part in webcast)
About Forum
* - online format only
CONSENT FOR PROCESSING PERSONAL DATA
Privacy Policy

I give my consent to mixed processing (collection, systematization, accumulation, storage, clarification (update, change), usage, transfer, deletion) of information containing my personal data (surname, name, patronymic name, citizenship, place of work , position, phone number, e-mail) requested by PenzGTU by authorized employees of PenzSTU during the event (hereinafter - personal data) in accordance with the legislation of the Russian Federation.



The specified personal data is provided for participation in the International Forum of Mathematical Education Promotion in 2021 (from October 01 to October 20, 2021).

I also agree to publish photo- and video- materials with my image in social networks and on the official websites of this event, PenzGTU and its media partners in order to highlight this event in social networks and in the media and use information materials, photo and video materials provided by me.


In case of unlawful use of the personal data provided by me, my written statement may revoke the consent.


I am aware that:

1. This consent for the processing of my personal data is valid until the day of its revocation in a written form or until the goal is achieved, depending on what happens earlier;

2. The consent may be revoked by me with a written statement sent to: 440039, Russia, Penza, Baydukov Ave. / Gagarin St., 1a / 11 or using the official website of the Forum.

The date of this consent issue for the processing of my personal data is the date of signing this consent.

The Forum aims:
The goals of the Forum:
1. Discussion of methods and techniques of Mathematics mainstreamification, presentation of the best techniques used for that with schoolchildren and with public at large.
2. Discussion of the role of non-formal mathematical education, methods and formats of its organization, motivation for students and promoters.
3. Discussion of innovative solutions in the field of teaching Mathematics and application of modern technologies aimed at digitalizing education together with demonstration of issue-related media materials of various formats for evaluating their possible usage in the educational process.
at creating favourable conditions for experience exchanging and making contacts between people involved in mathematical education and its promotion in different countries.
Чебышев Пафнутий Львович (1821-1894), российский математик и механик, член Петербургской академии наук (с 1856 г.), основатель Петербургской математической школы. Член Берлинской академии наук (1871), Болонской академии наук (1873), Парижской академии наук (1874; член-корреспондент с 1860), Лондонского Королевского общества (1877), Шведской академии наук (1893) и почетный член многих русских и иностранных научных обществ, академий, университетов.
«Нестрогие доказательства вредно действуют на умственные способности учеников, приучая их видеть там достаточную причину, где ее нет» П.Л. Чебышёв
Исследования Чебышева относятся к теории приближения функций многочленами, интегральному исчислению, теории чисел, теории вероятностей, теории механизмов и многим другим разделам математики и смежных областей знания.
В теории вероятностей Чебышеву принадлежит заслуга систематического введения в рассмотрение случайных величин и создание нового приёма доказательства предельных теорем теории вероятностей ‒ так называемого метода моментов.
В теории чисел Чебышев, впервые после Евклида, существенно продвинул изучение вопроса о распределении простых чисел.
Наиболее многочисленны работы Чебышева в области математического анализа. Была получена теорема об условиях интегрируемости в элементарных функциях дифференциального бинома. Важное направление исследований по математическому анализу составляют его работы по построению общей теории ортогональных многочленов. 
Помимо указанного равномерного наилучшего приближения, Чебышев рассматривал также квадратическое приближение, а помимо приближений алгебраическими многочленами, ‒ приближение посредством тригонометрических полиномов и с помощью рациональных функций.

Чебышев Пафнутий Львович (1821-1894), российский математик и механик, член Петербургской академии наук (с 1856 г.), основатель Петербургской математической школы. Член Берлинской академии наук (1871), Болонской академии наук (1873), Парижской академии наук (1874; член-корреспондент с 1860), Лондонского Королевского общества (1877), Шведской академии наук (1893) и почетный член многих русских и иностранных научных обществ, академий, университетов.
«Нестрогие доказательства вредно действуют на умственные способности учеников, приучая их видеть там достаточную причину, где ее нет» П.Л. Чебышёв
Исследования Чебышева относятся к теории приближения функций многочленами, интегральному исчислению, теории чисел, теории вероятностей, теории механизмов и многим другим разделам математики и смежных областей знания.
В теории вероятностей Чебышеву принадлежит заслуга систематического введения в рассмотрение случайных величин и создание нового приёма доказательства предельных теорем теории вероятностей ‒ так называемого метода моментов.
В теории чисел Чебышев, впервые после Евклида, существенно продвинул изучение вопроса о распределении простых чисел.
Наиболее многочисленны работы Чебышева в области математического анализа. Была получена теорема об условиях интегрируемости в элементарных функциях дифференциального бинома. Важное направление исследований по математическому анализу составляют его работы по построению общей теории ортогональных многочленов. 
Помимо указанного равномерного наилучшего приближения, Чебышев рассматривал также квадратическое приближение, а помимо приближений алгебраическими многочленами, ‒ приближение посредством тригонометрических полиномов и с помощью рациональных функций.


“Nonrigorous proofs have a bad impact on the students’ mental abilities teaching them to see a sufficient reason there, where there is none” P.L. Chebyshev
Chebyshev's researches relate to the theory of functions approximation by polynomials, integral calculus, number theory, probability theory, theory of mechanisms, and many other branches of mathematics and related fields of knowledge.
In probability theory, Chebyshev is credited with systematical introduction of random variables into consideration and development of a new method for proving limit theorems in probability theory - the so-called method of moments.
In number theory, Chebyshev, for the first time after Euclid, significantly promoted the study of the question of primes distribution.
The most numerous Chebyshev’s works are in the field of mathematical analysis. The theorem of conditions for integrability in elementary functions of a differential binomial was obtained. His works on the development of a general theory of orthogonal polynomials take an important part of ​​researches in mathematical analysis.
In addition to the uniform best approximation, Chebyshev also studied the quadratic approximation, and in addition to approximations by algebraic polynomials, the approximation by trigonometric polynomials and by rational functions.

Chebyshev Pafnutiy L’vovich (1821-1894), russian mathematician and mechanical engineer, member of the Petersburg Academy of Sciences (since 1856), founder of the Petersburg mathematical school, member of the Berlin Academy of Sciences (1871), member of the Bologna Academy of Sciences (1873), member of the Paris Academy of Sciences (1874); corresponding member (since 1860), member of the Royal Society of London (1877), member of the Swedish Academy of Sciences (1893) and honorary member of many Russian and foreign scientific societies , academies, universities.
Mstislav Vsevolodovich raised and solved the main questions of stability of solutions of the Dirichlet’s problem for the Laplace’s equation. For elliptic equations degenerating on the boundary of the domain, he was the first to find correct formulations of boundary value problems depending on the nature of the degeneration. Important results were obtained in the field of the theory of complex variable functions and its applications to hydrodynamics. He solved the problem of uniform approximation of functions in a closed domain by polynomials and studied the problem of approximation in average. Keldysh was the first to prove the system completeness of eigen and associated functions for non-self-adjoint operators with partial derivatives. Mstislav Vsevolodovich made an outstanding contribution to the development of computational and machine mathematics in the USSR, the creation of effective methods for calculating the problems of nuclear and space technology, the deployment and carrying out space researches.
Keldysh Mstislav Vsevolodovich (1911-1978), soviet scientist in the field of mathematics and mechanics, academician of the USSR Academy of Sciences, member of the Presidium since 1953, Vice-president (1960–61), and President of the USSR Academy of Sciences since 1961.
Keldysh is the author of a large number of fundamental researches in the field of mathematics, computational mathematics, aero hydrodynamics and the vibration theory. The main Keldysh’s mathematical works are devoted to the theory of real and complex variable functions, partial differential equations, and functional analysis.

Target audience
4
2
6
5
1
Science-oriented media representatives (journalists, bloggers, social networks podcasts authors).
People working for education authorities.
Representatives of non-for-profit institutions aiming at the spread of mathematical knowledge.
Leaders of circles, associations, departments of Mathematics, managers of funds and institutions promoting Mathematics.
People working in Mathematics promotion (science communicators, textbooks and other educational materials writers, popular science books authors).
Teachers and lectures of national educational institutions and study centers where Mathematics is taught.
3
Speakers
The Forum Program
The Forum will be held from October, 6th
to October, 13th
October, 6th (Wednesday)
October, 8th (Friday)
October, 13th (Wednesday)
Application to the Forum

If you want to participate in the Forum, you should pass the registration.
Which days of the Forum do you plan to participate in?
Format of participation*

If you want to present a report, you are to submit your materials
to program committee address not later than 15 days before the Forum starts.

Pressing the button you confirm an agreement on your personal
data processing and agree with confidentiality policy

Forum news

Program committee

Prominent figures

Chebyshev Pafnutiy L’vovich (1821-1894), russian mathematician and mechanical engineer, member of the Petersburg Academy of Sciences (since 1856)
Read more >
Keldysh Mstislav Vsevolodovich (1911-1978), soviet scientist in the field of mathematics and mechanics, academician of the USSR Academy of Sciences
Read more >
List of Russian Educational Resources in Russian and Mathematics
Show all

Useful links from Forum sessions

Forum partners
Forum moderators
Contacts
ifmep2021@gmail.com
+7 (8412) 20-42-24
Kindaev Aleksandr Yurievich


The event is supported by the Federal Agency for the Commonwealth of Independent States, compatriots living abroad, and international humanitarian cooperation
International Forum of Mathematical Education Promotion
© 2021